

MANUALE

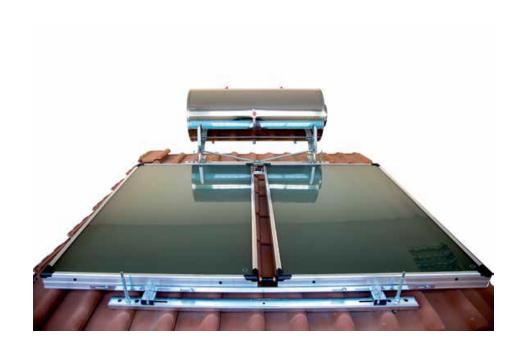
Solare Termico

MODELLI: AL-SF

M₂ DIMENSIONI

1.50 1010mm x 1480mm

1.75 1010mm x 1750mm


1.85 1230mm x 1480mm

2.00 1010mm x 1980mm

2.30 1160mm x 1980mm

2.50 1230mm x 1980mm

CONTENUTI

- 1. Introduzione
- 2. Parti
- 2.1 Caratteristiche dei collettori solari
- 2.2 Etichetta delle caratteristiche
- 2.3 Basi e loro caratteristiche
- 3. Collocazione dei Collettori
- 4. Rivestimento dei collettori
- 5. Installazione su tetto a terrazza
- 6. Installazione su tetto in tegole
- 7. Collegamento al circuito idraulico
- 8. Programma di cura e manutenzione

1. Introduzione

Questo documento presenta in dettaglio le istruzioni per l'installazione dei collettori solari con l'uso di basi ed elementi di supporto che sono inclusi nella confezione.

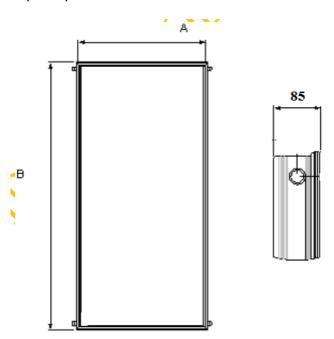
Prima di iniziare l'installazione, è necessario leggere le indicazioni Per qualsiasi domanda per quanto riguarda il materiale o il processo di assemblaggio, devi contattare il tuo fornitore. l' installazione errata del collettore comporterà un basso rendimento del collettore e potrà causare danni all'edificio ed alle persone.

L'installazione del collettore solare senza istruzioni corrette come mostrato in questo manuale renderà la garanzia non valida.

Prima dell'installazione, l'installatore deve controllare che vi siano tutte le parti necessarie e che tutte le misure di sicurezza siano state adottate (autoprotezione, precauzione contro le cadute, ecc.) in modo che il processo di installazione sia terminato senza pericolo.

2. Parti

Nella confezione è compreso:


- Uno o più Collettori Solari
- Una o più basi di appoggio per tetto a Terrazzo o Tegole
- Manuale per una corretta installazione
- · Kit di collegamento con antigelo

2.1 Caratteristiche dei collettori solari

I collettori solari sono inizialmente posizionati in un involucro di nylon termoretraibile mediante l'uso di macchina termica e tamponi protettivi posti ad ogni angolo.

I Collettori si trovano all'interno della confezione su un profilo in alluminio. I Collettori devono essere posizionati con il vetro rivolto verso l'esterno la parte superiore come se non ci fosse pericolo che l'acqua entri nei collettori dalle aperture.

Di seguito sono riportate le principali caratteristiche tecniche dei Collettori .

Caratteristiche AL-SF 2.50

Sigillanti

Tipo Collettore	selettivo AL-SF 2.50
Superficie Ag (a x b)	1,23 m x 1,98 m = 2,50 m2
Spessore Collettore Totale S	85 mm
Superficie della finestra Ac (a1 x b1)	1200 mm x 1950 mm
Assorbitore Superficie Aa (a2 x b2)	1200 mm x 1940 mm = 2,33 m2
Peso Collettore Senza Liquido	39,50 Kg
Pressione massima di esercizio	10 bar
Raccoglitore Liquido Capacità	1,65 lt
Spessore coperchio (Ic)	3,2 mm
Materiale della copertura in	Vetro temperato Mistlite
Distanza tra coperchio e assorbitore (Lp - c)	25 mm
Materiale del tubo	Rame
Materiale dell'assorbitore	Alluminio selettivo
Spessore assorbitore	0,40 mm
Tipo di saldatura	LASER
Numero di tubi	10
Diametro Tubo Esterno (D)	8 mm
Diametro interno del tubo (Di)	7,2 mm
Lunghezza tubi	1880 mm
Lunghezza dei tubi di distribuzione (I)	1250 mm
Diametro esterno del distributore	22 mm
Diametro interno del distributore	20,6 mm
Materiale isolante posteriore in	lana minerale
Spessore isolamento posteriore (Li1, Li2)	30 mm
Materiale isolante laterale in	lana minerale
Spessore Isolamento Laterale (Ls)	30 mm
Materiale del telaio	Profilo in alluminio
Piastra in ferro Materiale	Piastra in metallo Aluzinc
Spessore telaio	1,1 mm
Spessore Posteriore Piastra Metallica Aluzinc	0,5 mm
_ · · · · · · · ·	

100% Silicone Neutro IG

Caratteristiche AL-SF 2.75

T: 0 " "	
Tipo Collettore	selettivo AL-SF 2.75
Superficie Ag (a x b)	1,23 m x 2,25 m = 2,76 m2
Spessore Collettore Totale S	85 mm
Superficie della finestra Ac (a1 x b1)	1200 mm x 2220 mm
Assorbitore Superficie Aa (a2 x b2)	1200 mm x 2210 mm = 2,65 m2
Peso Collettore Senza Liquido	44,00 Kg
Pressione massima di esercizio	10 bar
Raccoglitore Liquido Capacità	1,74 lt
Spessore coperchio (Ic)	3,2 mm
Materiale della copertura in	Vetro temperato Mistlite
Distanza tra coperchio e assorbitore (Lp - c)	25 mm
Materiale del tubo	Rame
Materiale dell'assorbitore	Alluminio selettivo
Spessore assorbitore	0,40 mm
Tipo di saldatura	LASER
Numero di tubi	11
Diametro Tubo Esterno (D)	8 mm
Diametro interno del tubo (Di)	7,2 mm
Lunghezza tubi	1880 mm
Lunghezza dei tubi di distribuzione (I)	1250 mm
Diametro esterno del distributore	22 mm
Diametro interno del distributore	20,6 mm
Materiale isolante posteriore in	lana minerale
Spessore isolamento posteriore (Li1, Li2)	30 mm
Materiale isolante laterale in	lana minerale
Spessore Isolamento Laterale (Ls)	30 mm
Materiale del telaio	Profilo in alluminio
Piastra in ferro Materiale	Piastra in metallo Aluzino
Spessore telaio	1,1 mm
Spessore Posteriore Piastra Metallica Aluzinc	0,5 mm
Sigillanti	100% Silicone Neutro IG
Olymanii	100 /0 Sillcone Neutro 1G

2.2. Collettore

Etichetta Caratteristiche

Etichetta indicativa delle caratteristiche di funzionamento del Collettore. Ogni Collettore ha la sua etichetta di funzionamento.

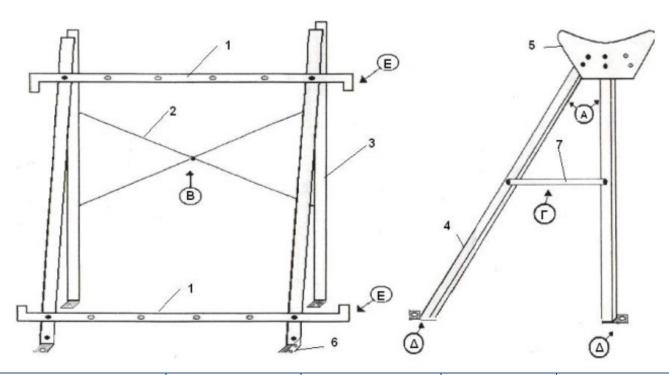
									1		Page 1/2
						Licenc	e Numb	er	Control Broken Control	0110.1	
Annex to Solar Keymark Cer	tificate					Date is	sued		2020-1	.2-21	
						Issued	by		DQS H	ellas	
Licence holder	SIRAKI	AN AND	RONIKO	S MON.	I.K.E.	Greece					
Brand (optional)	AL-SF P	LUS 2.5				Web	www.sir				
Street, Number		ial Area S				E-mail	200	irakian.g	(C)		
Postcode, City	57022 1	hessalor	riki			Tel	+30	231079	677 / 23	10795690)
Collector Type						Flat plat	e collecto	r			
						1	Pow	er outpu	t per coll	ector	
		79	2007		2000	Gb =				2 & u = 1.3	3 m/s
Collector name		Gross area (A _G)	Gross length	Gross	Gross height	0.000		ϑ_{m}	- ئ a		
		are Gr	P a	ַבָּ אַ אַ אַ פֿע	Gre	0 K	10 K	30 K	50 K	70 K	90 K
		m²	mm	mm	mm	W	W	W	W	W	W
AL-SF PLUS 2.5		2.44	1,978	1,232	85	1,928	1,825	1,609	1,377	1,130	874
						0	0	0	0	0	0
											į
						<u> </u>					
				-							
	-								0		
Power output per m² gross area						790	748	659	564	463	358
Performance parameters test met		Steady s	tate - out	tdoor							
Performance parameters (related	to A _G)	η0, b	a1	a2	a3	a4	a5	a6	a7	a8	Kd
Units		-		$W/(m^2K^2)$	J/(m³K)	-	J/(m²K)	s/m	W/(m ² K ⁴)		
Test results		0.798	4.11	0.008	0.000	0.00	0	0.000	0.00	0.0E+00	0.93
Incidence angle modifier test metl	nod		Steady s	tate - out	door						
Incidence angle modifier		Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°
Transversal		$K_{\theta T,coll}$	1.00	1.00	1.00	0.99	0.97	0.92	0.81	0.56	0.00
Longitudinal		$K_{\theta L,coll}$	1.00	1.00	1.00	0.99	0.97	0.92	0.81	0.56	0.00
Heat transfer medium for testing							Water		49.50	20	
Flow rate for testing (per gross are							dm/dt		0.021	kg/(sm²)
Maximum temperature difference							$(\vartheta_{m} - \vartheta_{a})_{r}$	nax	59.5	K	
Standard stagnation temperature	(G = 100	0 W/m²;	ϑ _a = 30 °0	C)			ϑ_{stg}		155	°C	
Maximum operating temperature							ϑ _{max op}			°C	
Maximum operating pressure							p _{max,op}			kPa	
Testing laboratory		emokrito	S					lar.demo			
Test report(s)	4296 D	75					Dated		2/12/20		
	4303 DI	E1							2/12/20	20	
Comments of testing laboratory							D	atasheet v	ersion: 6.1	l, 201 9-09	26
-							Non				
									ABORATOR		To
							Tel: +210	6503815 - Fa	c: +210 654459	2 AM	dust
							P.O. BOX 6	0037, 15310 Ag.	Paraskevi, Gree	će /	4
									¥1. 7¥1	*	
Central Offices: Kalavriton 4, 14	5 64 kifis	sia, Athei					233495, h	ittp://wv	ww.dqsh	ellas.gr, e	-mail:
			ioannisa	iexiou@d	qshellas.	gr					

Page 2/2

Annex to Solar Keymark Certific	Licence Number				SKM 10110.1										
Supplementary Information							Issued					2020-12-21			
Annual collector output in kWh/col	lector	at mea	n fluid	tempe	rature	მ									
Standard Locations		Athens		<u> </u>	Davos		S	tockhol	m	١ ١	Vürzbur	g			
Collector name ឋិក្ខ	25°C	50°C	75°C	25°C	50°C	75°C	25°C 50°C 75°C		25°C	50°C	75°C				
AL-SF PLUS 2.5	3,130	2,206	1,450	2,356	1,624	1,038	1,737	1,125	688	1,892	1,218	733			
				_											
				_											
				-											
Annual output per m² gross area	1,283	904	594	965	665	426	712	461	282	776	499	301			
Annual efficiency, η _a	73%	51%	34%	59%	41%	26%	61%	40%	24%	62%	40%	24%			
Fixed or tracking collector				ed (slop	e = latit	tude - 1	5°; roun	ded to	nearest	5°)					
Annual irradiation on collector plane	17	65 kWh		16	30 kWh	/m²	110	66 kWh	/m²	12	44 kWh	/m²			
Mean annual ambient air temperature		18.5°C			3.2°C	••		7.5°C			9.0°C				
Collector orientation or tracking mode		outh, 2			outh, 3			outh, 4			outh, 35				
The collector is operated at constant te collector performance is performed wit															
detailed description of the calculations									0.1 (Sep	rembe	2013).	A			
actanea accomption of the calculations	o a rana		ditiona					• /							
Collector heat transfer medium		Aut	altione	11 111101	matio)II			1	Water	Glycole				
The collector is deemed to be suitable f	or roof	integrat	ion								lo				
		cog. a.													
The collector was tested successfully un	der the	followi	ng cond	litions:											
Climate class (A+, A, B or C)										Д	-	-			
$G(W/m^2) > 1000$	9,	, (°C) >			20			$H_X(M)$	-, ,		00				
Maximum tested positive load Maximum tested negative load										000	Pa Pa				
Hail resistance using steel ball (maximum	m drop	height)								8	n				
Than resistance doming steel ball (maximus)			nal col	lector	attrib	ute(s)									
Using external power source(s) fo							e measi	ıre(s) fo	or self-p	rotectio	n				
Co-generating thermal and electr	ical pov	/er			açade (collecto	r(s)								
Energy Labelling Infor	matio	n			Add	litiona	l Infor	mativ	e Tech	nical [Data				
	Referen	ce Area,	A _{sol} (m ²)	Ну	draulic	Designa	ation Co	de	Ape	rature A	Area, A _a	(m²)			
AL-SF PLUS 2.5		2.44		13-VH	-13S-A:	7.2,188	0-C:20.6	,1250-		2.	28				
Data required for CDR (EU) No 811/202	l3 - Ref	erence	Area	Data re	equired	for CDI	R (EU) N	o 812/	2013 - R	Referen	ce Area	A _{sol}			
Collector efficiency (η _{col})		61%				iency (η			_	79	-	-			
						efficient			4.	11	W/(ı				
Remark: Collector efficiency (ncol) is defined			ooratura			coeffici			1	800	W/(n	n²K²)			
811/2013 as collector efficiency of the solar or difference between the solar collector and the							ier IAM			97	or rof	-			
and a global solar irradiance of 1000 W/m², e		_					in this sed ture area								
rounded to the nearest integer. Deviating fro							Consisten								
based on reference area (Asol) which is apert according to EN 12975-2 or gross area for ISC			es	-	-		ılations li				_				
according to Liv 12373-2 or gross area for 130	3000.20	,11.		simulati	ion progr	rams.									
Central Offices: Kalayriton 4, 145 64 kit	isia Δt	nens Te	d: ±301	623340	3.4 Fa	v· ±301	623340	5 http	·//w/w//	v dashe	llac or	e-mail·			

Page 1/2

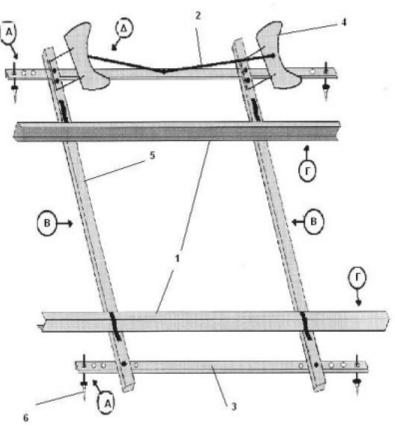
						Licence	e Numb	er	SKM 1	0110.2		
Annex to Solar Keymark Cer	Date issued		2020-12-20									
<u>li</u>							Issued by			DQS Hellas		
Licence holder	SIRAKI	AN AND	RONIKO	S MON.	try Greece							
Brand (optional)		LUS 2.75				Web	www.sirakian.gr					
Street, Number	C 201 (C 201) 12 (C)	ial Area S	indos			E-mail	office@s		r			
Postcode, City	A CONTRACTOR OF THE PERSON OF	Thessalor	- 1 A 14 A			Tel				10795690)	
						- 100.000,000						
Collector Type						Flat plat	e collecto	r.				
Collector name	٠	Gross area (A _G)	Gross length	Jth Jth	Gross height	Gb =		2, Gd = 1	t per coll 150 W/m2 - ປີ _a	ector 2 & u = 1.3	3 m/s	
		Gross area (Gross length	Gross width	Gross height	0 K	10 K	30 K	50 K	70 K	92 K	
		m²	mm	mm	mm	W	W	W	W	W	W	
AL-SF PLUS 2.75		2.77	2,249	1,232	85	2,174	2,059	1,825	1,584	1,336	1,052	
			1.02	11/0-0-14		0	0	0	0	0	0	
		 						-	-	_		
		-				<u> </u>			 			
		 				-			 			
									t			
		 							 			
							2		ļ.			
			- 3						A COLUMN TO THE	*	-	
:							2		<u> </u>			
-									<u> </u>	\vdash		
									1			
		 	_			 	-		 			
									-			
									ļ	\vdash		
									 	-		
Power output per m² gross area						705	742	CEO	F72	400	200	
		Ta. 11 = 1		101 111		785	743	659	572	482	380	
Performance parameters test met			tate - out						e Tr		101	
Performance parameters (related	to A _G)	η0, b	a1	a2	a3	a4	a5	a6	a7	a8	Kd	
Units		-	$W/(m^2K)$	$W/(m^2K^2)$	J/(m³K)	-	J/(m²K)	s/m	W/(m ² K ⁴)	W/(m ² K ⁴)	-	
Test results		0.793	4.11	0.003	0.000	0.00	0	0.000	0.00	0.0E+00	0.93	
Incidence angle modifier test meth	nod		Steady s	tate - out	door							
Incidence angle modifier		Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°	
Transversal		$K_{\theta T, coll}$	1.00	1.00	1.00	0.99	0.97	0.92	0.80	0.55	0.00	
Longitudinal		K _{θL,coll}	1.00	1.00	1.00	0.99	0.97	0.92	0.80	0.55	0.00	
Heat transfer medium for testing							Water					
Flow rate for testing (per gross are	a. A-1						dm/dt		0.021	kg/(sm²	1	
Maximum temperature difference		hermal r	erforma	nce test			$(\vartheta_{m} - \vartheta_{a})_{n}$	421	62.3	K		
Standard stagnation temperature							ϑ _{stg}	IIαX	173	°C		
Maximum operating temperature	ve = 5.5		a 1	e.• (ϑ _{max_op}		2.0	°C		
Maximum operating pressure							p _{max,op}		1	kPa	-	
Testing laboratory	NCSPD	emokrito	C				WWW.SO	ar domo	kritos ar	CAR 1955		
Test report(s)	4297 D		3				Dated	ar.uemo	2/12/20	20		
rest report(s)	4304 DI						Dateu		2/12/20			
Comments of testing laboratory							Da	atasheet v	ersion: 6.1	., 2019-09-	26	
							SOLAR Tel: +210 6	ENERGY 5503815 - Fa	KRITO LABORATO ax: +210 6544 . Paraskevi, Go	592 ell	We Je	


Central Offices: Kalavriton 4, 145 64 kifisia, Athens, Tel: +301 6233493-4, Fax: +301 6233495, http://www.dqshellas.gr, e-mail: ioannisalexiou@dqshellas.gr

Annex to Solar Keymark Certificate							Licence Number				SKM 10110.2 2020-12-20			
Supplementary Information						Issued								
Annual collector output in kWh/co	llector	at me	an fluic	temn	eratur	. n								
Standard Locations		Athens		l	Davos	o m	s	tockhol	m		Nürzbui	rσ		
Collector name	25°C 50°C 75°C			25°C	25°C 50°C 75°C 25°C 50°C				75°C	25°C	50°C	75°C		
AL-SF PLUS 2.75		_	_	_	_		1,958	_			1,399	882		
	,													
				_		_								
Annual output per m² gross area	1,272	906	616	961	677	456	707	467	299	770	505	319		
Annual efficiency, η_a	72%	51%	35%	59%	42%	28%	61%	40%	26%	62%	41%	26%		
Fixed or tracking collector	7270	5276					5°; rour				1270	2070		
Annual irradiation on collector plane	17	65 kWh	/m²	16	30 kWh	/m²	11	66 kWh	/m²	12	44 kWh	/m²		
Mean annual ambient air temperature		18.5°C			3.2℃			7.5°C			9.0°C			
Collector orientation or tracking mode	_	outh, 2			South, 3		_	outh, 4		_	South, 3			
The collector is operated at constant tel														
collector performance is performed with									5.1 (Sep	tember	2019).	А		
detailed description of the calculations	is availa						narknev	//						
- "		Ad	ditiona	al Into	rmatic	n								
Collector heat transfer medium	f										-Glycole			
The collector is deemed to be suitable for	01 1001	integrat	.1011								No			
The collector was tested successfully un	der the	followi	ng cond	itions:										
Climate class (A+, A, B or C)										A		-		
G (W/m ²) > 1000	9,	(°C)>			20			H _X (M	J/m²) >		6	00		
Maximum tested positive load										000				
Maximum tested negative load		la a ! a la a V								000		Pa .		
Hail resistance using steel ball (maximus			nal co	lloctor	attrib	uto(c)			1	8	ľ	m		
Using external power source(s) fo							e meası	ire(s) fo	r self-ni	rotectio	n			
Co-generating thermal and electric				_	Façade ((0)	. осн р					
Energy Labelling Infor							Infor	mativ	e Tech	nical I	Data			
		ice Area,	A _{rel} (m ²)	Нν			ation Co				Area, A _a	(m ²)		
AL-SF PLUS 2.75		2.77	301 (*** /				0-C:20.6				.62	()		
Date very lived for CDD (FU) No CAC (CO.	2 0-1		Λ ν.ς -	D :		f = 5=	. /F: !		1015			•		
Data required for CDR (EU) No 811/201	S - Ket	62%	Area					o 812/2			e Area	A _{sol}		
Collector efficiency (η _{col})					oss effici rder coe					.78 .11	\\\//	m²K)		
Remark: Collector efficiency (ncol) is defined 811/2013 as collector efficiency of the solar					d-order					003	W/(r			
temperature difference between the solar							ier IAM	(50°)		97				
surrounding air of 40 K and a global solar irra			N/m²,								tor refer			
expressed in % and rounded to the nearest in			from								EN 12975			
the regulation ncol is based on reference are			oo fa-	gross area for ISO 9806. Consistent data sets for either aperture or gross area can be used in calculations like in the regulation 811 and 812 and										
aperture area for values according to EN 129 ISO 9806:2017.	775-2 or	gross are	ed IOF		ion prog		addons II	ne m ule	regulati	011 011 (u 012 l	arru		
					, -9.									

2.3. BASE

Abbiamo due tipi di basi di appoggio, una per il terrazzo ed una per il tetto in tegole. A seconda della tipologia di Collettore che hai scelto, ti forniremo il supporto necessario .


2.3.1 Base per terrazzo

a.a.	Articolo	Caratteristiche	Quantità	Immagine
1	Angoli orizzontali / sopra - sotto	Spessore 2mm Zincato, Senza Giunture	2	
2	Staffe	Spessore 2mm Zincato, Senza Giunture	2	
3	Supporto colletto- re posteriore	Spessore 2mm Zincato, Senza Giunture	2	
4	Supporto colletto- re posteriore	Spessore 2mm Zincato, Senza Giunture	2	
5	Supporti boiler	Spessore 2mm Zincato, Senza Giunture	2	
6	Base telaio fron- tale	Spessore 2mm Zincato, Senza Giunture	2	
7	Base telaio po- steriore	Spessore 2mm Zincato, Senza Giunture	2	1-

a.a.	Articolo	Caratteristiche	Quantità	Immagine				
8	Aste regolabili	Spessore 2mm Zincato, Senza Giunture	2					
9	Viti	M8 X 16 Zincate						
10	Bordo	M8 X 60 Zincato						
11	Flange	M8 Zincate						
12	Spina	No 10		·				
20 - 25 Kg / Base								

2.3.1 Base per tetto in tegole

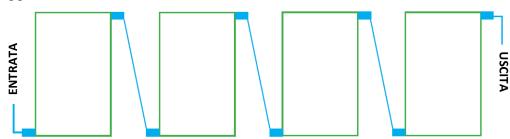
a.a.	Articolo	Caratteristiche	Quantità	Immagine
1	Angoli orizzontali / sopra - sotto	Spessore 2mm Zincato, Senza Giunture	2	
2	Connettori	M14 Zincati	1	
3	Staffe orizzontali	Spessore 2mm Zincato, Senza Giunture	2	111.1

a.a.	Articolo	Caratteristiche	Quantità	Immagine
4	Supporti boiler	Spessore 2mm Zincato, Senza Giunture	2	
5	Staffe verticali	Spessore 2mm Zincato, Senza Giunture	2	
10	Bordo	M8 X 60 Zincato	-1-1	
11	Flange	M8 Zincate	-03	
12	Viti	M8 X 16 Zincate		

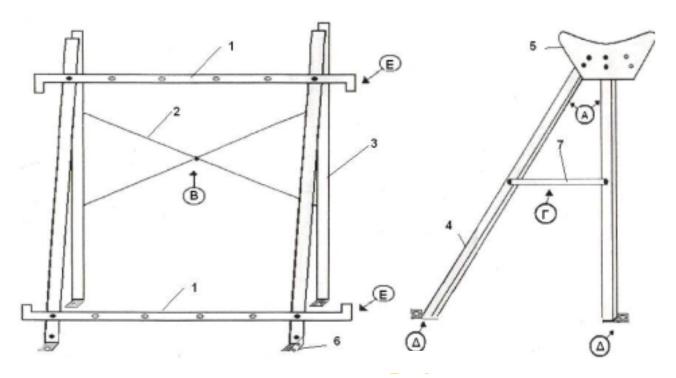
3. Posizionamento Collettore solare

La posizione, l'angolo e l'orientamento dei Collettori devono essere decisi durante la fase di progettazione di collocamento.

Il collocamento dei Collettori deve essere eseguito con la massima osservanza alle istruzioni del responsabile designer che dovrà tener conto dell' angolazione ed eventuale ombreggiatura soprattutto durante il calcolo del vantaggio del collettore solare.


Occorre prestare particolare attenzione alla distanza minima che dovrebbe essere mantenuta tra i due Collettori o tra un ostacolo davanti al Collettore.

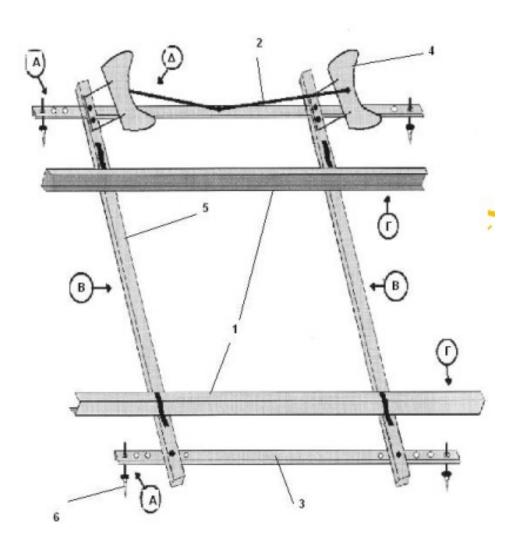
Durante il calcolo della distanza bisogna tenere in considerazione le coordinate geografiche, l'angolo al suolo e il periodo di utilizzo dell'impianto.


Fino al momento dell'installazione, i collettori solari devono essere conservati in un luogo asciutto nel loro imballo. Durante l'installazione, evitare che il vetro di copertura del collettore sia rivolto verso il basso, appoggiato su superfici bagnate o umide.

4. Disposizione Collettore solare

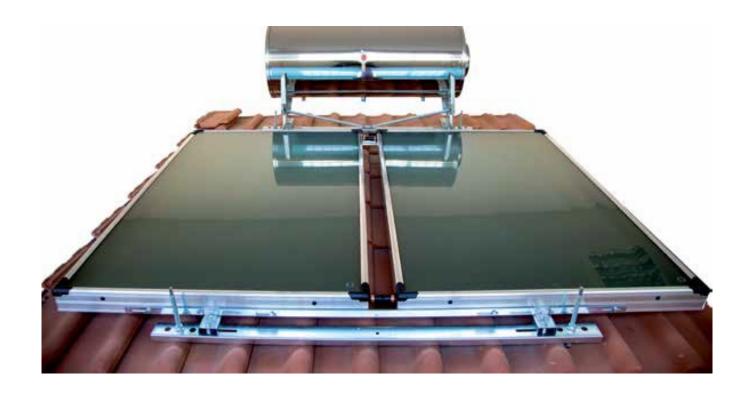
I collettori solari possono essere collegati tra loro per un massimo di 6 unità parallele collegando le parti superiore e inferiore degli elementi di connessioni che sono inclusi nella confezione. Si raccomanda che siano collegati uno accanto all'altro. Nota che lì dovrebbe esserci ampio spazio tra i Collettori in modo da consentire l'accessibilità per la manutenzione e per evitare possibile accumulo di ruggine.

5. Installazione base per terrazzo



- a. Colleghiamo i supporti verticali (3) con i lati (4)
- b. Colleghiamo i supporti verticali con Croce (2)
- c. Mettiamo il bastoncino (7) a lato
- d. Dopo aver collegato tutte le viti, fissiamo la base nel terreno con i tasselli per ottenere un miglior fissaggio
- e. Posizioniamo gli angoli orizzontali (1) e le basi per le caldaie (5)

Posizioniamo i Collettori. Ogni base contiene le viti per il montaggio.


6. Installazione base per tetti con tegole

- a. Posizioniamo i driver orizzontali (3) e apriamo i fori necessari nelle piastrelle per posizionarli utilizzando gli orli.
- b. Posizioniamo le unità verticali (5).
- c. Posizioniamo gli angoli del supporto (1).
- d. Colleghiamo due ricezioni per caldaie con il collegamento tra le 2 estremità.

7. Connessioni e Sistema idraulico

Si consiglia di utilizzare tubi in rame con larghezza minima di 1 mm e il diametro adeguato per garantire circolazione L'ingresso del liquido nei Collettori avviene dall'area inferiore dell'ultimo Collettore se installato per caldaie. Nell'ultima cima di collegamento dobbiamo posizionare una valvola di sfiato. L'uscita del liquido avverrà dal basso del Collettore. Sulla connessione di cui sopra bisogna mettere un coperchio. Il percorso dei tubi deve essere isolato in modo da ridurre al minimo le dispersioni di calore. In ogni Collettore dobbiamo aggiungere due interruttori uno per l'uscita ed uno per l'ingresso così come per i Collettori da isolare idraulicamente dal resto del circuito, deve anche aggiungere interruttore di un sicurezza. Il circuito primario dei Collettori deve coincidere con tutte le misure di sicurezza necessarie e soprattutto deve essere correttamente installato. Bisogna installare un contenitore per ricevere tutta l'evaporazione dai Collettori. Per evitare il surriscaldamento del sistema c'è bisogno che venga installato dove necessario. Il circuito primario dei Collettori deve contenere almeno un termometro ed un manometro per misurare la temperatura e la pressione del sistema. Prima del ripieno finale del sistema primario, una pulizia interna con acqua corrente per eliminare lo sporco, ecc per eseguire una prova della pressione così come per garantire l'isolamento del sistema senza superamento della pressione massima consentita per i Collettori Solari. Questo è fatto per garantire che tra i collegamenti dei Collettori non vi siano perdite. Nel caso ci dovrebbero essere perdite, i collegamenti dovranno essere chiusi con l'uso di due chiavi per evitare un eccessiva pressione sui tubi . Durante il riempimento finale dell' impianto antigelo dobbiamo verificare con circuiti siano i perfettamente puliti ed in pressione. d'aria Dopo questo processo le prese devono essere chiuse. È necessario evitare lavori come il lavaggio o il riempimento del sistema primario durante l' esposizione а luce solare intensa.

I collettori devono essere collegati idraulicamente in modo da formare un circuito primario chiuso.

8. Assistenza & Manutenzione

I Collettori devono sottoporsi a periodici controlli visivi d'ispezione. Se si è accumulata una quantità sufficiente di sporco sulla copertura in vetro del collettore, deve essere pulito. Questo compito deve essere svolto in mattinata prima delle 10:00 o nel pomeriggio dopo le 18:00 verificando principalmente che i collettori non siano troppo caldi. Se per qualche motivo il Cover Glass del colletdanneggiato bisogna tore è immediatamente sostituito. In caso contrario, l'interno del Collettore può essere distrutto a causa di pioggia, umidi-Durante il ciclo delle ispezioni, si prega di effettuare un'ispezione visiva di eventuali collegamenti allentati e dei punti di ingresso e di uscita del Collettore e le connessioni tra il Collettore così come le connessioni del circuito chiuso. Riparare e se necessario sostituire le parti che sono in cattive condizioni. Verificarne preventivamente lo stato e sostituirlo se necessario a causa dell'usura. In caso di un lungo periodo di inutilizzo è prevista la cessazione dell'uso (vacanze ecc.), ti suggeriamo di coprire utilizzando un apposito coperchio o per svuotare il sistema per evitare il surriscaldamento. La copertura deve essere posizionata correttamente in modo da non essere spazzata via dal vento. Nel caso in cui si svuota l'acqua dal sistema, è necessario durante la rabbocco dell' acqua aggiungere anche l'antigelo necessario. Il circuito chiuso dei Collettori deve essere protetto correttamente dalle basse temperature con l'uso di un adequato antigelo. Bisogna prestare particolare attenzione in modo da non permettere al livelli di antigelo di scendere quando si aggiunge acqua al sistema. Per l'installazione del sistema l'aggiunta di liquidi non va dimenticata. Suggeriamo il propinoglikoli - antigelo non tossico senza diluizione che può resistere a 72 gradi Celsius. Con diluizione il rapporto è di 1 litro di antigelo per 2 litri di acqua fino a 35 gradi Celsius. Noi suggeriamo un servizio annuale per l'aggiunta di liquidi (antigelo) e la manutenzione dovrà essere registrata sulla carta/libro di manutenzione del Collettore. Ovvero data, tipo di manutenzione, nome del manutentore firma. е

La società non è da ritenersi responsabile per lesioni che possono derivare da: una cattiva installazione idraulica del prodotto (cattivo/collegamenti sbagliati, piegatura dei tubi e prese.) Da installazione errata/errata. Da una installazione eseguita da persona non autorizzata o installatore non riconosciuto.